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Abstract
In this paper, we address hate speech and of-
fensive content detection for low-resource lan-
guages. To illustrate this, we selected Sinhala
as our primary language example. We analyze
the zero-shot performance of diverse models on
the SOLD dataset and juxtapose it with Chat-
GPT’s zero-shot performance. Surprisingly,
our study indicates that, except for models fine-
tuned on the SOLD dataset, ChatGPT consis-
tently outperforms even those fine-tuned on
Sinhala texts. These results underscore the re-
markable zero-shot capabilities of ChatGPT.
The research additionally conducts a compar-
ison of multilingual models using translated
text, as well as a combination of translated and
original text, in contrast to source language-
specific fine-tuned models on the original text.
Our research highlights the potential advan-
tages of fine-tuning models using both original
and translated text, in contrast to solely using
translated or original text. Furthermore, the
results demonstrate the superior performance
of fine-tuned source language models in hate
speech detection.

1 Introduction

The proliferation of hate speech and offensive con-
tent on digital platforms has underscored the ur-
gency of developing effective methods for their
detection across languages. we can protect peo-
ple from offensive content, detect offensive parts,
and censor it. Different variety of methods have
been used for hate speech detection tasks such as
traditional classifiers (Thomas Davidson and We-
ber, 2017; Waseem and Hovy, 2016; MacAvaney
and Frieder, 2019; Pamungkas et al., 2020), deep
learning-based classifiers (Agrawal and Awekar,
2018; Badjatiya et al., 2017) or the combination of
both approaches (Mossie and Wang, 2020). There
is also some research for investigation on the im-
portance of initial fine-tuning multilingual mod-
els on English hate speech and subsequently fine-
tuning them with labeled data in the target language

(Röttger et al., 2022). This paper addresses investi-
gating hate speech identification in a low-resource
Indo-Aryan language (Sinhala). The study encom-
passes classifying tweets as hate/offensive or not.
We explore the zero-shot performance of various
models, including ChatGPT. Additionally, we use
three approaches for fine-tuning different models:
1) Leveraging translation services in combination
with multilingual models, 2) Utilizing language
models fine-tuned on the source languages, and 3)
Fine-tuning multilingual models using a combina-
tion of both translated and original tweets.

2 Methodology

First, we investigate the zero-shot performance
of various models. We employ ChatGPT, along-
side Sinhala, multilingual, and English models, as-
sessing their capabilities across diverse input text
types. These include original Sinhala text, English
translations of tweets using Google Translate API,
and ChatGPT-generated translations of tweets. To
achieve this, we divided the dataset into batches of
10 and requested ChatGPT to translate each batch
while also identifying their labels for zero-shot eval-
uation.

In addition, we compare three different fine-
tuning strategies. The first, uses a translation-based
technique, employing the Google Translate API
and ChatGPT to convert content in the source lan-
guage into English, subsequently feeding transla-
tions to multilingual models (as an English text),
An English-only model that is pre-trained on hate
speech corpus. The second approach uses models
fine-tuned on the source language. The third ap-
proach combines both translated and original text
for fine-tuning multilingual models.

3 Experiments and Results

Our experiments reveal that, in terms of zero-
shot performance, ChatGPT surpasses models ex-
cept those specifically fine-tuned on the SOLD



Language Model Accuracy Precision Recall F1-Score

Sinhala

ChatGPT 0.612 0.590 0.551 0.523
xlm-roberta-base (Conneau et al., 2020) 0.588 0.413 0.496 0.376

twitter-xlm-roberta-base-sentiment (Barbieri et al., 2022) 0.583 0.476 0.496 0.398
SinhalaBERTo (keshan, 2021) 0.581 0.498 0.499 0.419

Sinhala-roberta (d42kw01f, 2021) 0.542 0.514 0.513 0.511
xlm-t-hasoc-hi (sinhala nlp, 2022a) 0.603 0.613 0.603 0.606

xlm-t-hasoc-hi-sold-si (sinhala nlp, 2022b) 0.834 0.833 0.834 0.832
xlm-t-sold-si (sinhala nlp, 2022c) 0.827 0.827 0.827 0.825

English
(Google Translate)

xlm-roberta-base 0.587 0.473 0.498 0.386
twitter-xlm-roberta-base-sentiment 0.496 0.517 0.517 0.496

distilbert-base-uncased 0.594 0.547 0.500 0.373
roberta-hate-speech-dynabench-r4-target (Bianchi et al., 2022) 0.586 0.544 0.527 0.501

English
(ChatGPT)

xlm-roberta-base 0.570 0.482 0.493 0.427
distilbert-base-uncased (Sanh et al., 2019) 0.561 0.517 0.513 0.498
roberta-hate-speech-dynabench-r4-target 0.595 0.554 0.517 0.450

Table 1: Zero-shot performance of hate speech detection for Sinhala

Language Model Accuracy Precision Recall F1-Score

English
(Google Translate)

distilbert-base-uncased 0.641 0.623 0.613 0.614
xlm-roberta-base 0.594 0.297 0.500 0.373

twitter-xlm-roberta-base-sentiment 0.642 0.628 0.628 0.628
roberta-hate-speech-dynabench-r4-target 0.657 0.642 0.622 0.623

Sinhala

SinhalaBERTo 0.823 0.822 0.808 0.813
Sinhala-roberta 0.833 0.827 0.826 0.826

xlm-roberta-base 0.823 0.820 0.811 0.814
twitter-xlm-roberta-base-sentiment 0.812 0.832 0.783 0.793

xlm-t-hasoc-hi 0.824 0.827 0.824 0.821
xlm-t-hasoc-hi-sold-si 0.832 0.840 0.832 0.827

xlm-t-sold-si 0.832 0.833 0.832 0.829

English + Sinhala xlm-roberta-base 0.826 0.826 0.826 0.825
twitter-xlm-roberta-base-sentiment 0.843 0.842 0.843 0.842

Table 2: Results of hate speech detection for Sinhala

dataset. In addition, utilizing models fine-tuned on
the source languages outperformed the translation-
based approach. This can be attributed to the preser-
vation of linguistic nuances and contextual under-
standing inherent in language-specific models, as
well as the absence of a proficient language model
for correct and accurate translations also some is-
sues present within the translated sentences. The
fine-tuned models on source language have bet-
ter performance in all cases for identifying hate
speech and offensive content. The utilization of a
blend of original and translated text demonstrates
superior performance compared to both preceding
methods. This could potentially be attributed to
the cross-lingual knowledge transfer effect, where
insights from one language positively impact the
understanding of others.

4 Conclusion and Future Work

This study examines hate speech detection for
low-resource languages. We choose Sinhala
for this purpose. ChatGPT displays impressive
zero-shot performance, surpassing models except
those fine-tuned on the SOLD dataset. We com-
pare translation-based multilingual models with
language-specific fine-tuned models, highlighting
the effectiveness of the latter. Furthermore, com-
bining translated and original data improves hate
speech detection results.

As part of our future work, we plan to extend our
experiments to encompass additional languages.
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