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Abstract

Neural language models typically employ a categorical approach to prediction and training, lead-
ing to well-known computational and numerical limitations. An under-explored alternative ap-
proach is to perform prediction directly against a continuous word embedding space, which ac-
cording to recent research is more akin to how categories are represented in the brain. Choos-
ing this method opens the door for large-vocabulary language models and enables substantially
smaller and simpler computational complexities. In this research we explore a different important
trait - the continuous output prediction models reach low-frequency vocabulary words which we
show are often ignored by the categorical model. Such words are essential, as they can contribute
to personalization and user vocabulary adaptation. In this work, we explore continuous-space
language modeling in the context of a word prediction task over two different textual domains
(newswire text and biomedical journal articles). We investigate both traditional and adversarial
training approaches, and report results using several different embedding spaces and decoding
mechanisms. We find that our continuous-prediction approach outperforms the standard categor-
ical approach in terms of term diversity, in particular with rare words.

1 Introduction

In recent years neural approaches to language modeling have demonstrated substantial improvements in
performance (Melis et al., 2018; Merity et al., 2018), and the latest techniques produce high-quality pre-
dictions across many benchmarks (Peters et al., 2018; Devlin et al., 2018). According to (Jozefowicz et
al., 2016) “the best (language) models are the largest we were able to fit into a GPU memory” suggesting
that good model performance is conditioned on the access to heavy computational resources. This perfor-
mance comes at a price: most current SotA models employ deep architectures that are computationally
complex and require a significant number of parameters to be learned. One major reason for this is that
traditional approaches to language modeling (both neural and otherwise) model the task as categorical
prediction: given a history of discrete symbols (words, subword units, etc.), from a finite vocabulary V/,
predict the next symbol in a sequence. Recent studies (Huth et al., 2012; Huth et al., 2016), however,
reveal that categories in the semantic space of our brain are organized in a distributed fashion !

Inspired by meaning representation of categories in the brain, in this work we investigate the retrieval
process of continuous representation. We assume that such representations exist, and propose a mech-
anism to retrieve them. This mechanism will be operating in the form of a language model, in a word
prediction task. We will compare the “traditional” approach of retrieval of terms by classification, to
retrieval through generation of the location of a desired term in a dense and continuous space. The
generated location will indicate the vicinity of the model’s predicted category, and will be mapped to
a specific category representation of a term that is found in the continuous space. To accomplish this,
we follow the architecture proposed in (Kumar and Tsvetkov, 2019) and develop a GAN on top of their
proposed model. GANs (Goodfellow, 2016) are known to be an effective generative approach in images,
as well as other domains (Pascual et al., 2017) that are represented in a continuous fashion, which was

! (Huth et al., 2012) hypothesize that the distributed representation has evolved due to efficiency considerations of storage
noting that the brain “represents diversity of categories in a compact space”



the driving reason for developing this architecture for our problem. In the next sections we describe the
methods and metrics by which we evaluate the models, the models’ architectures, and our experimental
evaluation, and discuss ways to further develop this continuous approach to word prediction.

2 Methods

We conducted our word prediction experiments across two distributionally-different domains: the an-
notated English Gigaword corpus (Ferraro et al., 2018, LDC2018T20) (NYT), and full-text biomedical
journal articles from the open-access subset of PubMed Central (Beck, 2010) (PMC) containing a longer-
tailed distribution of words. For experimental purposes, we assume a fixed ? set of continuous representa-
tions; for each domain, we trained a corpus-specific set of word embeddings using word2vec (Mikolov et
al., 2013). We use these embeddings throughout the experiments, and their associated vocabulary entries
serve as locations to be predicted by the continuous models. We explored embedding dimensionalities of
both 50 and 200. The model’s prediction of a point in the embedding space is decoded to a specific lex-
ical item via a nearest-neighbor technique, as well as with an experimental feature-based augmentation
(see Sec. 3). The locations learned by the model are the target terms themselves, so a successful model
guess occurs when the target embedding was found closest to the location predicted by the model.
Models We developed and evaluated three different families of model architecture. First, a simple
categorical-prediction baseline (ctg), consisting of an LSTM encoder topped with a softmax classi-
fication layer and trained with a cross-entropy loss function. Second, a continuous model (c) with a
similar architecture aside from its final layer, which instead is a dense and fully-connected layer with the
same dimensionality as the input embedding space; we experimented with several loss functions for c.
Third, we used a GAN-based approach (G) that employed the ¢ model as its generator, and was trained
together with a discriminator D. D internally imitated G, but was also provided with either a genuine
(“real”) or predicted (“fake”) embedding from G, following the approach of (Mirza and Osindero, 2014).
Inside D, the generated embedding € is compared to €,¢q1, fake in order to discern the authenticity of the
embedding as described in Eq. 1.
Dy=o0o ((éD - ereal,fak:e)Te + b) (D

The dynamic of the proposed GAN is described in Eq. 2.

min max L(D, G) = Eynpyyy, (w) 108 D(Welwhistory)] + Bionpg o) [l0g(1 — D(G (| whistory)))] (2)

Evaluation Our experimental focus was on the performance of our models at a word prediction task,
and in this work we propose a new metric to look into an often overlooked behaviour of neural language
models: their tendency to ignore infrequently-observed vocabulary entries (Holtzman et al., 2020). Our
proposed metric (fypes) describes how many correctly-predicted unique vocabulary types were retrieved,
though we do also measure fokens, describing whether the model guessed a correct/incorrect token. This
maps more closely to traditional accuracy metrics of word prediction models. Our interest in this work
is primarily on our models’ performance at predicting infrequent fypes to measure long tail performance.
We also report results using our simple nearest-neighbor decoding approach, as well as our augmented
approach. In our evaluation, all models were evaluated for their top-1 and top-10 performance, analogous
to text entry prediction in our smartphones (in which top-1 accuracy may not be essential).

3 Results

Table 1 describes overall results of token- and type-level performance. We employed several baselines,
including fregq, which predicting top 10 most common words in train set, and ugrm, which sampled
from a unigram distribution learned from the training set. £reqg shows that by blindly predicting the 10
most common types, the token-level prediction accuracy reaches 23.39. The ugrm baseline performs
lower on token accuracy but correctly predicts more types. These serve as lower-bound baselines.

Table 1 indicates that with dimensionality 50, the token prediction is higher for ct g, whereas the type
prediction is greater in the continuous approaches. All models improve token prediction in dim 200, and
type difference is smaller, yet exist (11p). Note that G is more diverse than c.

’In Sec. 4 we address a possible relaxation of that assumption.
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Figure 1: NYT fype coverage by training fre-
quency bin. n: number of items in each bin; y-
axes are percentages over n (note different scales).
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models to a very high level of accuracy. Table 2: NYT PoS decoding

Table 2 shows that this decoding technique behaved differently depending on the model. For the
categorical models it advances the hit rate of tokens, while for the continuous approaches it enhances
the diversity of types predicted, reinforcing our explanation of an inherently different mechanism of
prediction of the two different approaches.

4 Discussion

In this work we presented an architecture for retrieval of terms, that was successfully retrieving more
types (including in the long-tail region) than its categorical counterpart. Predicting the long-tail is key
in personalization that targets the terms of mid to low frequency expressed by the user. In addition, we
proposed PoS decoding which is a way to improve decoding of the continuous approaches. Beyond the
goal of performance improvement, the proposed decoding served as a useful diagnostic tool revealing
more about the different prediction nature of the continuous approaches and the categorical one. Learning
locations in the embedding space could be further improved, one way is by developing ways to add
more embeddings (of different domains) to an existing space. We plan to explore adaptation with the
continuous approaches as these models are not bounded to a finite set of terms. We also would look into
combining both approaches as they were found to be complementary in behaviour.
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