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Abstract
Gender bias negatively impacts many natural language processing applications, including ma-
chine translation (MT). The motivation behind this work is to study whether recent proposed
MT techniques are significantly contributing to attenuate biases in document-level and gender-
balanced data. For the study, we consider approaches of adding the previous sentence and the
speaker information, implemented in a decoder-based neural MT system. We show improve-
ments both in translation quality (+1 BLEU point) as well as in gender bias mitigation on
WinoMT (+5% accuracy).

1 Introduction

Gender bias is negatively affecting Natural Language Processing (NLP) (Costa-jussà, 2019; Sun et al.,
2019). Gender bias clearly appears in word embeddings, associating certain neutral professions with
males (programmer) and others with females (housekeeper) (Bolukbasi et al., 2016).

This bias has been demonstrated in Neural Machine Translation (NMT), where translations seem to
ignore the context and translate professions with their stereotyped genders (Font and Costa-jussà, 2019;
Stanovsky et al., 2019). This occurs due to the fact that NMT systems generally work on a sentence
by sentence basis. Several approaches have been proposed to output different gendered translations
(Kiritchenko and Mohammad, 2018), add gender information in the process of training (Vanmassenhove
et al., 2018), and use debiased word embeddings (Font and Costa-jussà, 2019). Other approaches focused
on measuring gender bias in translation systems (Prates et al., 2020; Stanovsky et al., 2019). Finally, the
work by Costa-jussà et al. (2019) presented a non-synthetic gender-balanced data set, which can be
considered to evaluate NMT.

The main contribution of this work is using existing NMT contextual methodologies, both context
of the previous sentence (Junczys-Dowmunt, 2019) and speaker identification (Vanmassenhove et al.,
2018), in a prominent and competitive NMT architecture (Fonollosa et al., 2019). These approaches are
explicitly tested for the purpose of mitigating gender bias while improving the translation quality. The
architecture in our experiments uses only the decoder part of the popular Transformer (Vaswani et al.,
2017; He et al., 2018; Fonollosa et al., 2019); thus, reduces training parameters and simplifies the model.

2 Methodology: adding context and speaker id in a decoder-based NMT model

This study uses the following two recent proposed methodologies to improve the accuracy of NMT.
While these methodologies are not new, we are adding them on a different baseline (Fonollosa et al.,
2019) and testing specifically on a gender-balanced data sets. We describe the baseline system and the
techniques as follows and examples are shown in Table 1.

Neural Machine Translation with joint source-target self-attention. The current state of the art
is the encoder-decoder architecture using the Transformer (Vaswani et al., 2017) that avoids recurrence
completely and gives better translations depending on the stacked self-attention and fully connected
layers between encoder and decoder. An alternative to this architecture is based on the simplified archi-
tecture by Fonollosa et al. (2019) 1. This model, instead of having both encoder-decoder, only uses the
decoder block and it adopts the idea of language modeling for translation task. The joint source-target
representations are learnt in the early layers. Positional embeddings are applied to the source and target

1https://github.com/jarfo/joint



independently. There are also language embeddings representing the language of the source and the tar-
get separately. Different from the self attention in normal transformers, a locally constrained attention is
proposed by the authors to attend only to a token’s locality, to form a reduced receptive field.

Adding the previous context sentence (PreSent): Concatenating two sentences with a separator
token. This method adopts the idea of increasing the context (Junczys-Dowmunt, 2019).

Incorporating the speaker gender identification (SpeakerId): Incorporating the information of the
gender of the speaker in NMT by adding the gender tag before each sentence (Vanmassenhove et al.,
2018). This approach is specially helpful when translating from a less inflected language to a more
inflected one, e.g., from English to Spanish.

Methods Examples
Baseline I have only done this once before.
+PreSent I have only done this once before. <sep> This is not a joke.
+SpeakerId MALE I have only done this once before.

Table 1: Methodologies examples

Methods EuroParl GeBio
Baseline 44.01 36.34
+PreSent 45.10 36.55
+SpeakerId 44.18 36.51

Table 2: BLEU results (best in bold).

3 Experimental Framework, Results and Discussion

Data and Parameters: Spanish is a highly-gendered morphological language compared to English,
associating gender to professions and adjectives. That is why the language pair (EN-ES) has been used
from the proposed data in Vanmassenhove et al. (2018).The size of the EN-ES dataset is considered
moderate with 1,419,507 number of sentences. We have used two test datasets: a random set of EuroParl
(2000 sentences) and the gender-balanced set from wikipedia biographies (GeBioCorpus) (Costa-jussà
et al., 2019) that contains 1000 sentences from male bios and 1000 sentences from female bios. The
gender of the main character in the biography article is used as the gender tag. The model is built on top
of fairseq2 library and the parameters are customized as follows: Adam optimizer, 30K training steps, 14
layers, 512 as embedding dimensionality, feedforward expansion of dimensionality 2048 and 8 attention
heads, based on best performing parameters from previous work (Fonollosa et al., 2019).

BLEU results (Table 2). These results have been acquired by testing Europarl test set and GeBioCor-
pus. Adding the previous sentence has higher impact in Europarl (+1.09) than in GeBioCorpus (+0.21)
due to the fact that documents in GeBioCorpus are not coherent (all sentences belong to the same docu-
ment but some sentences may not be contiguous). Adding the gender tag shows exactly the same effect
in GeBioCorpus than in Europarl (+0.17), even if the speaker identification is not from the same nature
in the EuroParl and in GeBioCorpus. In the former, the speaker identification comes from the speaker,
whereas in the latter, it comes from the biography main character.

Other advantages (Table 4 and Table 5). The outputs of our systems have been manually analysed to
study the impact of explored techniques on final translation. We report translation examples where both
PreSent and SpeakerId techniques are helping towards named entity disambiguation (in terms of gen-
der). Furthermore, we show other translation examples where adding PreSent shows an improvement
towards morphological agreement and quality on translation style.

Evaluating on WinoMT (Table 3 and Figure 1). This step is carried out by translating the WinoMT
dataset and evaluating the translation by Stanovsky et al. (2019) system that depends on extracting
the gender of entities of the translated sentences. These entities are evaluated against the gold anno-
tations provided by the original English dataset. The evaluation is performed on three aspects, the whole
WinoMT dataset, and subsets of both pro-stereotypical and anti-stereotypical sentences. An example
of anti-stereotypical sentences is The developer argued with the designer because she did not like the
design., where the developer is a female entity. An example of pro-stereotypical sentences is The CEO
helped the nurse because he wanted to help., where the CEO is a male entity. As shown in Figure 1, the
systems are performing better on the pro-stereotypical portion of WinoMT than on the anti-stereotypical

2https://github.com/pytorch/fairseq



one. The accuracy (Acc), shown in Table 3 and Figure 1, indicates that the methodology PreSent per-
forms best compared to the other approaches in this paper (baseline or SpeakerId). The PreSent detects
the gender more correctly than the others whether pro-stereotyped or anti-stereotyped, and its accuracy
reaches 61% with 12.2% difference between f1-scores of males and females. This accuracy improves
over the best results presented in the original paper (Stanovsky et al., 2019), where the best accuracy
is 59.4% with 15.4% difference between f1-scores of males and females. It is important to notice that
WinoMT is a test set that does not contain information at the level of document and without speaker
identification, so translation with our methodologies is done without this information. Therefore, adding
the information of the previous sentence makes the system more robust and it does not mind that we are
doing inference without this information.

Methods Acc. 4G
Baseline 56.0 18.7
+PreSent 61.0 12.2
+SpeakerId 52.5 22.2

Table 3: WinoMT evaluation results. Acc. indicates gender
accuracy (% of instances the translation had the correct gender),
4G denotes the masculine/feminine difference in F1 score. In
bold, best results.
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Figure 1: Acc.% on gender translation with respect to pro-
stereotypical entities and anti-stereotypical entities in WinoMT.

Named Entity Disambiguation
Source Marı́a del Carmen Pérez ...is a Spanish Egyptologist , curator and researcher.
Baseline Marı́a del Carmen Pérez ...es un egipcio pintor , curador e investigador español.
+PreSent Marı́a del Carmen Pérez ...es una ciudadana española egipcia , curadora

e investigadora.
Better dealing with articles

Source Mı́riam Hatibi ... is a Catalan data analyst and activist.
Baseline Mı́riam Hatibi ... es un analista de datos catalán y un activista.
+PreSent Mı́riam Hatibi ... es una analista y activista catalana en materia de datos.

Better style of translations
Source Helena Maleno Garzón ... is a Spanish human rights defender , journalist,

researcher , documentalist and writer.
Baseline Helena Maleno Garzón ... es un defensor de los derechos humanos español, periodista,

investigador , documentalista y escritor.
+PreSent Helena Maleno Garzón ....es una defensora española de los derechos humanos,

periodista, investigadora , documental y escritora.

Table 4: Baseline vs PreSent Examples from GeBioCorpus.

Named Entity Disambiguation
Source Bianca Maria Piccinino ... is an Italian writer , journalist and television hostess.
Baseline Bianca Maria Piccinino ... es un escritor italiano , periodista y centro de televisión.
+SpeakerId Bianca Maria Piccinino ... es una escritora italiana , periodista y anfitriona

de televisión.

Table 5: Baseline vs SpeakerId Examples from GeBioCorpus.
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source-target self attention with locality constraints.
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